Yr 11 PRD work

Question 1

A sketch of 2x + 3y = 12 is shown.

Work out the coordinates of R.

.....

(1 mark)

Question 2

The sketch graphs of two straight lines are shown.

Work out the coordinates of P.

www.drfrostmaths.com

.....

(1 mark)

Question 3

A straight line with equation y = mx + c has gradient m and y-intercept c.

Here are the equations of four straight lines, P, Q, R and S.

- P 2y 4x = 5
- Q 5y = 2x 4
- R 2y 4 = 5x
- 4y = 5 2x

Select the line that passes through (7,2)

- [] P
- [] Q
- [] R
- **[**] s

(1 mark)

Question 4

Write down the equation of the straight line that

passes through the point (0,4)

and

is parallel to the line y = 5x + 3.

.....

(2 marks)

Find an equation of the line through ${\it B}$ parallel to ${\it AC}$.

.....

Question 6

Work out the equation of the line shown.

.....

(3 marks)

Question 7

A straight line has gradient -2 and passes through the point (-3,10).

Work out the equation of the line.

Give your answer in the form y = mx + c

.....

(2 marks)

Question 8

Work out the equation of the straight line that passes through the points (2,0) and (0,-4).

www.drfrostmaths.com

(3 marks)	

Select the two equations that are equivalent to 2y = 3x + 4

(2 marks)

Question 10

Determine the distance between A(-5, -4) and B(-7, -1), giving your answer as an **exact value**.

.....

Question 11

Determine the distance between A(2, -3) and B(3, 2), giving your answer as an **exact value**.

.....

Determine the distance between P(-1,1) and Q(1,-1), giving your answer as an **exact value**.

.....

Question 13

The diagram shows the graph of y = 3x + c, where c is a constant.

Find the value of k.

.....

(3 marks)

Question 14

In which region would the line represented by the equation $y = \frac{2}{3}x + 2$ be in the following Venn diagram?

What is the gradient of the line with equation x + 2y = 8?

.....

Question 16

What is the gradient of the line with equation:

$$y = \frac{x - 1}{5}$$

Give your answer in decimal form.

www.drfrostmaths.com

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

Ais the point with coordinates (1,3)B is the point with coordinates (-2,-1)

The line **L** has equation 3y = 4 - 2x

Is line **L** parallel to *AB*?

[] Yes

No

(3 marks)

Question 18

What is the gradient of the line with equation:

$$\frac{3}{5}y = 4 + \frac{2}{7}x$$

.....

Question 19

What is the y-intercept of the line with equation:

$$y+1=\frac{3-x}{5}$$

Give your answer in decimal form.

.....

Question 20

The equation of a line **L** is 2x - 3y = 6

Find the equation of the line which is parallel to L and passes through the point (6, 9).

(2 marks)		

Answers

Question 1

(0,4)

(0, 4)

B1

Question 2

(5,0)

(5, 0)

B1 (5x, 0y) is E

Check diagram for answer written next to \boldsymbol{P} if answer line is blank

Question 3

Q

Q

B1

Question 4

$$y = 5x + 4$$

	y = 5x + 4	B2	oe B1 for $y = mx + 4$ or $y = 5x + c$, $c \ne 3$ or $5x + 4$						
	Ad	ditional G	Buidance						
14	y = 5x			B1					
	y = 4			B1					
	y = 5x - 3								
	y = 5x + 3								
	5x + 1			В0					

Question 5

$$2x + y = 2$$

Question 6

$$y = \frac{1}{2}x + 4$$

Attempt to work out gradient	M1	e.g. 3 ÷ 6 seen oe Right-angled triangle drawn on diagram
$m = \frac{1}{2}$ or $c = 4$ seen or implied	M1	e.g $\frac{1}{2}x + 4$ oe Gradient = $\frac{1}{2}$ or Intercept = 4
$y = \frac{1}{2}x + 4$	A1	oe

$$y = -2x + 4$$

10 = -2(-3) + c or c = 4 M1
$$y - 10 = -2(x - (-3))$$
 or $y = -2x + c$
 $y = -2x + 4$ A1

Question 8

$$y = 2x - 4$$

y-intercept = -4	M1	oe May be implied from equation or expression
Gradient = 2 or (m =) $\frac{04}{2 - 0}$ or 2 or 0 = 2m - 4	M1	oe May be implied from equation or expression
y = 2x - 4	A1	oe

Question 9

"
$$y - \frac{3}{2}x = 2$$
" and " $3x - 2y + 4 = 0$ "

B and D

B1 for 1 correct (and 1 incorrect or 2 correct and 1 incorrect

Question 10

 $\sqrt{13}$

Question 11

 $\sqrt{26}$

Question 12

 $2\sqrt{2}$

Question 13

4

3 B1 for c = -2
or M1 for
$$y = 3k - 2$$
 $k \ne 0$
And
M1 for $10 = 3k - 2$

Question 14

"G"

Question 15

 $-\frac{1}{2}$

Question 16

0.2

Question 17

No

eg. $\frac{31}{12} \left(= \frac{4}{3} \right)$			Ml	for gradient of line AB	M1 for $y = \frac{4}{3}x + \frac{5}{3}$	M2 for sketch of L with $(0, \frac{4}{3})$ and			
$y = \frac{4}{3} - \frac{2}{3}x$ or $y = \frac{4 - 2x}{3}$			M1		M1 for $\frac{4}{3}x + \frac{5}{3} = \frac{4}{3} - \frac{2}{3}x$ oe	(2, 0) marked on axes AND (1,3) and (-2, -1) joined			
$(m=)-\frac{2}{3}$									
	No with reason	3	Al	accept no w	ith $-\frac{2}{3}$ (or -0.666) and $\frac{4}{3}$ (or	r 1.333)			
			$-\frac{2}{3}$ and $\frac{4}{3}$ may be seen as coefficients of x in $y = mx + c$ OR						
					By = 4 - 2x and line through AB	12			
			$(y = \frac{4}{3}x + \frac{5}{3})$ intersect at $x = -\frac{1}{6}$ or $y = \frac{13}{9}$ OR						
			L has a negative gradient (with evidence), line AB has a positive gradient (with evidence)						
			NB: Any value given for a gradient must be correct						

Question 18

 $\frac{10}{21}$

Question 19

-0.4

Question 20

$$y = \frac{2}{3}x + 5$$

$9 = \frac{2}{3} \times 6 + c$		2	M1	for correct substitution	SC Award B2 if
				into $y = "\frac{2}{3}"x + c$	$y-9="\frac{2}{3}"(x-6)$
				using their answer	seen; then isw
	$y = \frac{2}{3}x + 5$		A1	for $y = \frac{2}{3}x + 5$ oe inc $2x - 3y = -15$ ft from their answer	SC Award B1 for $2x - 3y = k$ where $k \neq -15$ and $k \neq 6$ with no working
				to (a)	SC If M0 A0, award
			with $y = 0$	0, award B1 for answer mitted which would core M1 A1 eg $\frac{2}{3}x + 5$,	B1 for $y = \frac{2}{3}x + c$ where $c \neq 5$ or $c \neq 0$ (ie do not award this
			2x-3 if ans	s to (a) is 2	mark for $y = \frac{2}{3} x + 5$ or $y = \frac{2}{3} x$
					or $y = \frac{2}{3}x$
					or does not ft from (a)